

QUESTION PAPER WITH SOLUTION

CHEMISTRY _ 5 Sep. _ SHIFT - 1

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

1. The potential energy curve for the H₂ molecule as a function of internuclear distance is:

Sol. 2

2. The most appropriate reagent for conversion of C₂H₅CN into CH₃CH₂CH₂NH₂ is: (2) Na(CN)BH₃ (4) LiAIH (1) NaBH, (3) CaH₂

Sol. CH₃CH₂CN ___LiAIH₄ ___ CH₃CH₂CH₂NH₃

3. Which of the following is not an essential amino acid? (1) Valine (2) Tyrosine (3) Lysine (4) Leucine

Sol. 2 Tyrosine in not an essential amino acid

4. Which of the following derivatives of alcohols is unstable in an aqueous base?

(1)
$$\underset{RO}{\overset{O}{\bigvee}}$$
 Me (2) $\underset{RO}{\overset{RO}{\bigvee}}$ (3) $\underset{RO}{\overset{O}{\bigvee}}$ (4) $\underset{RO}{\overset{O}{\bigvee}}$

Sol. Hydrolysis of ester occurs in basic medium.

The structure of PCI_5 in the solid state is: 5.

(1) Square planar $[PCl_4]^+$ and octahedral $[PCl_6]^-$ (2) Tetrahedral $[PCl_4]^+$ and octahedral $[PCl_6]^-$

(3) Trigonal bipyramidal

(4) Square pyramidal

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Sol.

In solid state PCl₅ exist in Ionpair i.e. (PCl₄+) and (PCl₅-) PCl₄⁺ (sp³ tetrahedral) PCl_6^{-} (sp³d²) – octahedral)

- A diatomic molecule X_2 has a body-centred cubic (bcc) structure with a cell edge of 300 pm. The 6. density of the molecule is 6.17 g cm $^{-3}$. The number of molecules present in 200 g of X_2 is:(Avogadro constant $(N_A) = 6 \times 10^{23} \text{ mol}^{-1}$
 - $(1) 8 N_A$
- $(2) 2 N_{\Delta}$
- $(3) 40 N_{\Delta}$
- $(4) 4 N_{\Delta}$

Sol. 4

$$X_2 \rightarrow BCC$$

a = 300pm

$$d = 6.17g/cm^3 = \frac{2 \times GMM}{6 \times 10^{23} \times (300 \times 10^{-10})^3}$$

GMM =
$$\frac{6.17 \times 6 \times 9 \times 3 \times 10^{-1}}{2}$$

GMM = $81 \times 6.17 \times 10^{-1}$
= 49.97 g/mol

No. of molecules =
$$\frac{200g}{49.97g/mol}$$
 = 4 mol = $4N_A$

7. The equation that represents the water-gas shift reaction is:

(1) CO(g) +
$$H_2O(g) \xrightarrow{673 \text{ K}} CO_2(g) + H_2(g)$$

(2)
$$2C(s) + O_2(g) + 4N_2(g) \xrightarrow{1273 \text{ K}} 2CO(g) + 4N_2(g)$$

(3)
$$C(s) + H_2O(g) \xrightarrow{1270 \text{ K}} CO(g) + H_2(g)$$

(4)
$$CH_4(g) + H_2O(g) \xrightarrow{1270 \text{ K}} CO(g) + 3H_2(g)$$

Sol. 1

Fact

8. The increasing order of the acidity of the α -hydrogen of the following compounds is:

(A)

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION[®]

Sol. 1 Stability order

9. Identify the correct molecular picture showing what happens at the critical micellar concentration (CMC) of an aqueous solution of a surfactant (polar head; non-polar tail; water).

(1) (B) **Sol. 4**

- **10.** If a person is suffering from the deficiency of nor-adrenaline, what kind of drug can be suggested?
 - (1) Antihistamine

(2) Antidepressant

(3) Anti-inflammatory

(4) Analgesic

Sol. 2

If nor-adrenaline is low, person may suffer from depression. Hence, anti depressant drug is suggested.

11. The values of the crystal field stabilization energies for a high spin d⁶ metal ion in octahedral and tetrahedral fields, respectively, are:

(1)
$$-2.4 \Delta_0$$
 and $-0.6 \Delta_+$

(2)
$$-1.6 \Delta_0$$
 and $-0.4 \Delta_1$

(3)
$$-0.4 \Delta_{0}$$
 and $-0.27 \Delta_{+}$

(4)
$$-0.4 \Delta_{0}$$
 and $-0.6 \Delta_{1}$

Sol. 4

 $d^{6}(octahedral) \rightarrow high spin complex$

$$= t_{2g^4} \text{ eg}^2$$

$$\text{CFSE} = \left(-\frac{2}{5} \times 4 + \frac{3}{5} \times 2\right) \Delta_0$$

$$= \left(\frac{-8+6}{5}\right) \Delta_0$$

= $-0.4\Delta_0$ d⁶ (tetrahedral) \rightarrow high spin complex

$$= eg^3 t_{2g^3}$$

CFSE =
$$\left(-\frac{3}{5} \times 3 + \frac{2}{5} \times 3\right) \Delta_t$$

= $-0.6 \Delta_t$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

12. A flask contains a mixture of compounds A and B. Both compounds decompose by first-order kinetics. The half-lives for A and B are 300 s and 180 s, respectively. If the concentrations of A and B are equal initially, the time required for the concentration of A to be four times that of B (in s) is: (Use $\ln 2 = 0.693$)

(1)180

(3)120

(4)900

Sol.

$$A_t = A_0.e^{-k_1t}$$

$$B_{t} = B_{0} \cdot e^{-k_{2}t}$$

$$k_1 = \frac{ln2}{300}$$

$$k_2 = \frac{ln2}{180}$$

 A_{L} and B_{L} are related as [A] = 4[B]

$$A_0.e^{-k_1t} = 4 \times B_0.e^{-k_2t}$$

$$\frac{t}{180} - \frac{t}{300} = 2$$

$$\frac{t}{3} - \frac{t}{5} = 120$$

$$\frac{2t}{15} = 120$$

$$t = 900 sec$$

13. The increasing order of basicity of the following compounds is:

(1)(D) < (A) < (B) < (C)

(2)(A) < (B) < (C) < (D)

(3)(B) < (A) < (D) < (C)

(4)(B) < (A) < (C) < (D)

Sol.

Correct order of basicity

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

- **14.** The condition that indicates a polluted environment is:
 - (1) pH of rain water to be 5.6
- (2) BOD value of 5 ppm
- (3) 0.03% of CO₂ in the atmosphere
- (4) eutrophication

Sol 4

Eutrophication is the condition in which excessive richness of nutrients in a lake or water body, which causes dense growth of plant life and BOD increases.

- **15.** In the sixth period, the orbitals that are filled are:
 - (1) 6s, 5d, 5f, 6p
- (2) 6s, 4f, 5d, 6p
- (3) 6s, 6p, 6d, 6f
- (4) 6s, 5f, 6d, 6p

Sol. 2

(Fact) \rightarrow energy order of orbital's according to Aufbau principle 6s < 4f < 5d < 6p

- **16.** The difference between the radii of 3^{rd} and 4^{th} orbits of Li^{2+} is ΔR_1 . The difference between the radii of 3^{rd} and 4^{th} orbits of He^+ is ΔR_2 . Ratio ΔR_1 : ΔR_2 is:
 - (1)8:3
- (2)3:8
- $(3)^{\frac{1}{3}}: 2$
- (4) 2 : 3

Sol. 4

$$(R_4 - R_3)_{L^{1+2}} = \frac{0.529}{3} \{4^2 - 3^2\} = \Delta R_1$$

$$(R_4 - R_3)_{He^{+2}} = \frac{0.529}{2} \{4^2 - 3^2\} = \Delta R_2$$

$$\frac{\Delta R_1}{\Delta R_2} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

17. In the following reaction sequence the major products A and B are:

$$+ \bigcup_{O} \xrightarrow{\text{anhydrous}} A \xrightarrow{\text{1. Zn-Hg/HCl}} B$$

(1)
$$A = \bigcup_{CO_2H}^{O}$$
; $B = \bigcup_{CO_2H}^{O}$; $B = \bigcup_{CO_2H}^{O}$

(3)
$$A = \bigcup_{CO_2H} ; B = \bigcup_{C$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Motion[®]

Sol. 4

$$\begin{array}{c}
O \\
O \\
\hline
Anhy. AlCl_3
\end{array}$$

$$\begin{array}{c}
O \\
O \\
\hline
Anhy. AlCl_3
\end{array}$$

$$\begin{array}{c}
O \\
COOH
\end{array}$$

$$\begin{array}{c}
COOH
\end{array}$$

$$\begin{array}{c}
COOH
\end{array}$$

- **18.** The correct electronic configuration and spin-only magnetic moment (BM) of Gd^{3+} (Z = 64), respectively, are:
 - (1) [Xe] $5f^7$ and 7.9 (2) [Xe] $4f^7$ and 7.9 (3) [Xe] $5f^7$ and 8.9 (4) [Xe] $4f^7$ and 8.9

Sol. 2

Gd
$$\rightarrow$$
 [Xe]⁵⁴ 4f⁷ 5d¹ 6s²
Z=64 $-3e^{\Theta}$

(B)

Gd⁺³ = [Xe]⁵⁴ 4f⁷

$$\mu = \sqrt{7(7+2)} = \sqrt{63}$$

= 7.9 BM

- **19.** An Ellingham diagram provides information about:
 - (1) The pressure dependence of the standard electrode potentials of reduction reactions involved in the extraction of metals.
 - (2) The conditions of pH and potential under which a species is thermodynamically stable.
 - (3) The kinetics of the reduction process.
 - (4) The temperature dependence of the standard Gibbs energies of formation of some metal oxides.

Sol. 4

Fact

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Motion[®]

20. Consider the following reaction:

 $N_2O_4(g) \rightleftharpoons 2NO_2(g); \Delta H^0 = +58 \text{ kJ}$

For each of the following cases (a, b), the direction in which the equilibrium shifts is:

- (a) Temperature is decreased.
- (b) Pressure is increased by adding N₂ at constant T.
- (1) (a) towards reactant, (b) towards product
- (2) (a) towards reactant, (b) no change
- (3) (a) towards product, (b) towards reactant
- (4) (a) towards product, (b) no change
- Sol. 2

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

 $\Delta H^\circ = +58 \text{ kJ}$

(towards reactant)

- (a) temp $\downarrow \Rightarrow$ Backward shift as it is endothermic reaction
- (b) As ${}^{\backprime}N_2{}^{\prime}$ will not react with both N_2O_4 & NO_2 , as moles increases in reactants, as much as in products, a = hence there is no change in equilibria.
- ∴ no change
- **21.** The minimum number of moles of O_2 required for complete combustion of 1 mole of propane and 2 moles of butane is _____.
- Sol. 18

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O_3$$

1 mol 5 mol

$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O$$

2 mol 13 mol

Total required mol of $O_2 = 5 + 13 = 18$

- **22.** The number of chiral carbon(s) present in piptide, Iie-Arg-Pro, is ______
- Sol. 4

A soft drink was bottled with a partial pressure of CO_2 of 3 bar over the liquid at room temperature. The partial pressure of CO_2 over the solution approaches a value of 30 bar when 44 g of CO_2 is dissolved in 1 kg of water at room temperature. The approximate pH of the soft drink is _____ × 10^{-1} .

(First dissociation constant of $H_2CO_3 = 4.0 \times 10^{-7}$; log 2 = 0.3; density of the soft drink = 1 g mL⁻¹)

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion[®]

Sol. 37

$$H_2CO_3 \rightleftharpoons H^{\bigoplus} + HCO_3^{-1}$$

 $t = 0 \quad 0.1 \qquad 0 \qquad 0$
Eq. $0.1(1 - \alpha) \quad 0.1\alpha \qquad 0.1\alpha$

$$\begin{array}{l} 4 \ \times \ 10^{-7} = \ \frac{0.1\alpha^2}{1-\alpha} \\ (1-\alpha) \ \simeq \ 1 \\ \alpha^2 = 4 \times 10^{-6} \\ \alpha = 2 \times 10^{-3} \\ [H^+] = 2 \times 10^{-4} M \\ pH = -[-4 \times log(2)] = 3.7 = 37 \times 10^{-1} \end{array}$$

24. An oxidation-reduction reaction in which 3 electrons are transferred has a ΔG^0 of 17.37 kJ mol⁻¹ at 25°C. The value of E°_{cell} (in V) is _____ × 10⁻². (1 F = 96,500 C mol⁻¹)

Sol.

$$\Delta G^{\circ} = -nFE^{\circ}$$

17.37 × 1000 = -3 × 96500 × E°

$$E^{\circ} = \frac{17370}{3 \times 96500}$$

$$E^{\circ} = \frac{579}{9650} \text{ volt}$$

= 0.06 = 6 × 10⁻² volt
Ans. 6

25. The total number of coordination sites in ethylenediaminetetraacetate (EDTA4-) is ____

Sol.

EDTA4- is hexadentate ligand

Admission **OPEN**

जब इन्होंने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

JEE MAIN RESULT 2019

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA	S.	
Recorded Video Solutions	NA	8	
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring	NA	NA	

•				
CLASS	SILVER	GOLD	PLATINUM	
7th/8th	FREE	₹ 12,000	₹ 35,000	
9th/10th	FREE	₹ 15,000	₹ 40,000	
11th	FREE	₹ 29,999	₹ 49,999	
12th	FREE	₹ 39,999	₹ 54,999	
12th Pass	FREE	₹ 39,999	₹ 59,999	

- SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
- GOLD (Online) can be converted to regular classroom (Any
- MOTION Center) by paying difference amount after lockdown. *** PLATINUM (Online + Regular) can be converted to regular
- classroom (Any MOTION Center) without any cost after

New Batch Starting from:

16 & 23 September 2020

Zero Cost EMI Available

